Investigating SSMEC’s (State Micro) 486s with the UCA

Released in September 1989 by Intel, the legendary 486 CPU enjoyed widespread popularity in numerous PCs for many years before being gradually replaced by the Pentium and its successors. This era profoundly influenced the entire CPU industry for decades. Up until then, only Intel designed x86 microarchitectures, allowing third parties like AMD to produce Intel’s intellectual property in their own fabs. However, in the first half of the 1990s, new CPU manufacturers emerged with their own 486-compatible CPUs, designed through clean-room reverse engineering. As a result, the decade was marked by numerous lawsuits between Intel and its new competitors over patent infringements related to the x86 architecture.

By the time Intel discontinued the 486 in 2007, the definitive list of pin-compatible 486 CPU manufacturers was as follows:

    • Intel – The original developer of the 486, Intel released the 486, followed by the 486DX and 486SX (with a disabled FPU), then the clock-doubled DX2 and SX2, and finally the clock-tripled Intel DX4, reaching speeds of up to 100 MHz.
    • AMD – Biggest second source. Produced both 486-clone based on Intel’s IP and in-house tuned architecture like the AMD X5 / 5×86 up to 160 MHz.
    • Cyrix – Short-lived but famous company that only produced CPUs based solely on their own original designs, such as the Cx486 and the Cyrix 5×86.
    • ST Microelectronics – Only rebranded Cyrix CPUs
    • Texas Instrument – Mostly rebranded Cyrix CPUs and a custom “barely compatible” 486 core (486SXL2)
    • IBM – Mostly rebranded Cyrix CPUs, but also some Intel second source and even a custom 486 core  internally used on IBM PCs (not on PGA)
    • UMC – A Taiwanese company that produced some rare 486-compatible CPUs known as “Green CPU” using their in-house low-power microarchitecture.

Although it is extremely rare to discover an unknown manufacturer of a well-known CPU like the 486, this is precisely what happened a few years ago when pictures of a peculiar and unseen 486 marked “SM486” surfaced online. Recently, I managed to acquire a couple of these elusive CPUs (a DX33 and a DX2-66). The Universal Chip Analyzer is the perfect tool for an in-depth study of these rarities. Are they merely clones of an already known 486 architecture? Are they based on a brand-new design? Where do they come from?

The story behind State Microelectronics

The first step is to identify the company behind the laser-printed logo on the CPUs. Given that they originated from China, a quick search on the Chinese internet revealed another picture of the logo with the acronym “SSMEC,” which stands for “Shenzhen State Microelectronics Co. Ltd.” This company was initially established in 1993 under the name “Shenzhen State Micro Science and Technology Co. Ltd.” It was the first IC design company to be part of China’s “909 Project,” a national initiative aimed at developing China’s semiconductor chip industry. The goal was to establish China as a competitive player in the global semiconductor industry, reduce reliance on foreign technologies, foster in-house innovation, and acquire Chinese-controlled intellectual property.

Shenzhen State Microelectronics old and new logos

After numerous reorganizations over the years, SSMEC is now part of “Guoxin Microelectronics Co. Ltd.” a subsidiary of the state-owned giant Tsinghua Unigroup. Notably, Tsinghua Unigroup also owns “Yangtze Memory Technologies Corp” (better known as YMTC), the first Chinese-owned company to design and mass-produce the critical 3D NAND Flash used in smartphones and SSDs. I couldn’t find any reference to an x86 CPU developed by SSMEC on their (very undetailed) website. It’s difficult to determine exactly what this company is currently working on. The closest reference to a potential CPU is a 2011 award given by the Shenzhen Municipal Government for a “32-bit High-performance Integrated Communication Microprocessor.”

SM486DX33 Analysis

Physically, the SM486DX33 comes in a 168-pin PGA ceramic package. The printing is rotated 90° counterclockwise, but pin 1 is marked with a small square to ensure correct orientation. There are also two numbers laser-marked on top: “035” and “1650.” The latter appears to be a date code (Year 2016, Week 50), but 2016 seems quite late for a 486 CPU. Additionally, it appears that State Microelectronics changed its logo well before 2016. A 486-class CPU should have been produced in the 1990s, unless this chip was intended for a very specialized industry, such as aerospace or military. The back of the CPU has no markings, and the gold lid is slightly different from all other known Intel 486DX CPUs.

For further investigation, let’s insert the SM486DX33 into the Universal Chip Analyzer. The first step was to determine the correct voltage. At 3.45V, the SM486DX33 only booted up to 20 MHz, so 5V was clearly the correct voltage to achieve 33 MHz operation. Both benchmarks ran successfully, and the UCA concluded the test with a PASS status. Here is how it is detected:

As shown in the screenshots from the UCA, the CPU is detected as an Intel 486DX with a reset signature of 0x404. The CPUID instruction is not supported, and JTAG is not available. The 0x404 identifier matches that of an Intel 486DX with the D0 stepping (either SX419 or SX729). It is very common for other manufacturers to copy Intel’s reset signature to avoid issues with software detection. However, a look at the benchmark results leaves no room for doubt: with an INT Benchmark score of 126.5 and an FP Benchmark score of 69.4, the SM486DX33 delivers exactly the same results as an Intel 486DX-33. All the INT/FP instructions have the exact same latency and throughput, indicating that the microarchitecture of this CPU is a perfect clone of Intel’s 486.

Now, we need to determine whether this SSMEC CPU is simply an Intel-produced 486 die assembled into a custom ceramic package, or if it is a clone built using a custom foundry process (possibly using Intel’s wafer masks). Again, the Universal Chip Analyzer can assist with its power-consumption profiling features. I compared the SM486DX33 with four different Intel 486DX-33 CPUs based on the D0 stepping, as well as with an earlier Intel 486DX-33 C0-Stepping and a later one built on the aB0 Stepping.

The results are quite interesting. All early Intel 486DX-33 CPUs up to the D0-Stepping are based on Intel’s P648 process (also known as CHMOS IV) with a 1 µm gate length. Later 486 models, such as the SL-enhanced SX810, use the newer P650 process (CHMOS V – 0.8 µm). At 33 MHz, the power consumption of an Intel 486DX built on a 1 µm node is 3.00 Watts +/- 5% (2.85-3.15W). Therefore, a 486 CPU returning the 0x404 (D0) signature should fall within that range. However, the SM486DX33 has a power consumption of 2.37W, which does not align with a 1 µm process, despite its signature. This suggests that the chip is built on a 0.8 µm process like the SX810, which has a 0x415 reset signature and supports CPUID and JTAG.

SM486DX266 Analysis

Now let’s examine the clock-doubled 486DX2 at 66 MHz from SSMEC. The top markings are similar to those on the SM486DX33, with two numbers: “173” and “1425.” As before, this appears to be a date code (Year 2014, Week 25) but could be misleading for the reasons previously mentioned. There are still no markings on the bottom, but the lid is much smaller, resembling the one found on later Intel 486DX4 models.

The SM486DX266 also operates only at 5V to achieve its rated speed. The UCA was able to test it perfectly. Here is how it is detected:

This time, the CPU from State Microelectronics is detected as an Intel 486DX2-66 (aB0-Stepping) with the 0x435 reset identifier, matching Intel’s specification. More interestingly, the CPUID instruction is now supported, confirming the 0x435 identifier. The CPUID Vendor String is “GenuineIntel,” just like on Intel’s 486 DX2. JTAG is also supported and returns Intel’s Manufacturer ID and the same Product ID code as the original DX2s. With an INT Score of 218.0 and an FP Score of 135.4, the SM486DX266 achieves the exact same results as an Intel 486DX2-66, indicating they share the same microarchitecture. Now it’s time to compare the power profile of the State Micro 486DX2 with Intel’s DX2.

The results are surprising once again. The SM486DX266 requires half the power of any Intel 486DX2 based on the aB0-Stepping (SX807 and SX911). Intel’s aB0-Stepping (ID 0x435) is built on the P650 process (CHMOS V – 0.8 µm). However, the power consumption of the SSMEC CPU suggests it matches a more advanced process, such as the Intel P652 (0.6 µm) process used in later 486DX4 models. At 75 MHz, an Intel 486DX4 (0.6 µm) requires about 2.3W. When clocked down to 66 MHz, this almost perfectly matches the 1.95W of the SM486DX266. No genuine Intel DX2 CPUs have ever used a process more advanced than P648 (0.8 µm), making this finding quite interesting.

Conclusion

From a microarchitectural perspective, State Micro’s SM486s are clearly an exact replica of Intel’s 486 CPUs. The latency and throughput of instructions are identical between both CPUs. Even the JTAG identifier, which is the only way to distinguish between an Intel 486 and a third-party CPU like AMD using Intel’s masks, points to Intel. It remains unclear how State Micro obtained Intel’s 486 IPs and whether they had the legal rights to use them. Intel’s licensing of x86 products, especially during the 486 era, was extremely restricted. Only AMD and IBM had the legal right to produce 486s based on Intel’s IP, and that was granted after a long legal battle for AMD. It is highly unlikely that Intel would have granted such deep cloning rights to a state-owned company in China. Even if that were the case, they would likely have changed at least the JTAG identifier.

From a process standpoint, these SM486 CPUs reveal unexpected secrets. Both appear to be a node ahead of Intel’s genuine 486s (die-shrink), suggesting they likely did not come from an Intel fab. While the Intel 486DX-33 with D0-Stepping were built on a 1 µm process, the clone from State Micro seems to use a 0.8 µm (made-in-China) process. The same applies to the SM486DX2, which seems to be based on a 0.6 µm process, whereas Intel DX2s with aB0-Stepping were only based on the 0.8 µm process.

It’s possible that these CPUs were designed as test ICs to help establish a new Chinese foundry, which might explain their rarity and why they only surfaced in 2024. Another intriguing possibility is that they were produced to ensure long-term support for critical systems designed in the 90s, such as military applications, energy infrastructures (like nuclear or oil), or heavy civil technologies. For instance, many trains in France still use AMD 486DE2 processors as on-board computers.

CPU collectors have observed a high demand for aftermarket microprocessors from the 80s and 90s from Chinese buyers since 2010. The most sought-after CPUs include the 80C186 and the 486DX33 and DX2-66 models. CPUShack, one of the largest resellers in the USA, who shipped over 1000 of these 486s to China, noted that the SX419 & SX729 (for DX33s) and SX807 & SX911 (for DX2-66s) were by far the most popular among Chinese buyers. These specific models correspond exactly to the D0 and aB0 steppings that the SM486 CPUs replicate. The exact applications of these 486s in China remain a mystery, but it’s clear that there is a significant and ongoing demand for them.

If you have any additional information about these chips, please contact me or leave a comment below – I’d love to hear from you!

SZ State Micro employees – May 2024

 

The UCA 386 Adapter supports Ti & Cyrix 486s

Adding support for Cyrix & TI 486s was supposed to be a matter of hours. It finally took almost one month and gave me many headaches. I almost burned everything to the ground several times in rage, begged for help from FPGA’s gurus who told me what I’m trying to achieve was like squaring the circle, but I did not give up. Let’s try to explain why it was so hard.

— always(@TLDR; Technical stuff) —

FPGAs are synchronous beasts used to create finite states machines: almost everything inside a FPGA is synchronized to a clock signal. Each time the clock is ticking, the HDL code analyzes inputs and sets a pre-defined state (that itself defines registers, outputs, the next state, …). To add support for a CPU, you must read the datasheet and write some HDL code that will provide the correct outputs (from the FPGA to the CPU) within the required timings. All these timings are linked to the base clock. A synchronization between the CPU and the FPGA is crucial. For all other CPUs I’ve worked on for the UCA, the FPGA provides the base clock to the CPU. Both the FPGA and the CPU are sharing the same clock and synchronization is easy. But 386s require a clock-doubled input (80 MHz for a 386DX-40 MHz) that I’m not able to provide directly from the FPGA because the 3.3-to-5 volt translators are too slow. So I use an external clock-doubler PLL, but doing so prevents the FPGA from having access to the CPU clock. That’s the root of all issues I had.

Fortunately, using an external phase-locked loop (PLL) means the clock input phase is synchronized with the clock-doubled output signal: the rising edge of both clocks occurs at the same time.  Knowing the transmission delays added by the voltage converters at a given frequency, you can still synchronize your FPGA with the CPU without having access to the base clock. That works fine as long as you don’t change the frequency. But that was too easy: I want to be able to switch frequency on-the-fly and within a large range (from 12.5 MHz to 40 MHz to cover all 386s). That’s still possible if you build many bitfiles (compiled HDL “FPGA firmware”), one for each frequency. Nah! I want to use the same bitfile for everything, including support for both microarchitectures (Cyrix & Intel) despite the different timing’s requirements. That’s hell but I almost succeeded.

The actual firmware is not perfect but I’m quite happy with it because it works as expected in most cases. The remaining issue is a hole between ~21 and ~28 MHz where the FPGA can’t reliably catch the required inputs from the CPU at the rising or falling edge of the clock. My Logic Analyzer is unfortunately too slow to solve this but it’s not a big deal. The HDL code works fine at 12.5 MHz, 16 MHz, 20 MHz, 33 MHz and 40 MHz. The only “retail” frequency I’m not able to do is 25 MHz. I built another bitfile for this frequency only and I’ll hope to find a way to merge everything in the same bitfile later. To avoid losing my mind, I’ll wait to have enough money to buy a faster logic analyzer (like the lovely DSLogic U3Pro32) to work on this again.

— End —

But here it is: the UCA supports all Cyrix-based 386 like the 486DLC. Here are the ones I used for the test:

Cyrix 486DLC & DRx2Unlike 386-class CPUs from AMD, which are based on Intel’s microcode and are exact clones, the Cx486DLC introduced in June 1992 uses a custom microarchitecture built from scratch by Cyrix. While still using the 32-bit 386 bus, they come with 486-class features like an embedded L1 cache and some new instructions. The Cyrix 486DLC is not a perfect pin-to-pin replacement for Intel 386s as timings are a bit different and cache control lines must be handled by the chipset. Compatibility issues are well known with many – especially older – motherboards. The original 486DLC was available at 25 MHz, 33 MHz and 40 MHz. All of these were manufactured by Texas Instruments on the 0.8µm CHMOS node. Ti also launched their own, rebranded 486DLC chips, which were exactly the same except for the marking. Please notice the vicious 90° rotation between printings and pin 1 on the Ti486DLC. Fortunately, the Universal Chip Analyzer have strong short-circuit protection built-in…

Cyrix also later released a special, clock-doubled version called the 486DRx². It was available at 16/32, 20/40 MHz, 25/50 MHz and even 33/66 MHz. This later one was the fastest PGA132 CPU ever released.

Cyrix 486DLC-40 & Cyrix 486DRx²-25/50 Tested on the UCA
Cyrix 486DLC-40 & Cyrix 486DRx²-25/50 Tested on the UCA

The original Cyrix 486DLC exists with two steppings: the earliest one with CPUID 0x420 and a later one with CPUID 0x421. The proprietary “DIR” identification registers available on Cyrix’s CPU is only available on newer CPUs. None of the 486DLC tested have them. The 486DRx² is the only one to have DIR registers and reports itself as Model = 0x07. The UCA happily tested the 486DLC at 40 MHz and was even able to overclock my 486DRx2 25/50 at 33/66 MHz for a short time. Cyrix 486s run hot and deserve a proper heatsink. Power consumption is as high as a 486 DX2 and can go as high as 4 watts (4 times higher than a later Intel 386 DX-33)!

Much later in the development process, I feel confident enough to try a blank 486DLC Engineering sample I got many years ago.

This ES is not a clock-doubled CPU like the DRx² and was able to run properly at 33 MHz. CPUID is 0x421 and – surprise! – it has DIR registers, identifying itself at Model = 0x01 (the expected value for a Cyrix 486DLC) and stepping 0x22, with seems to match the handwritten value (2/2) marked on top. The DRx2 25/50 tested above comes with stepping 0x21, so this ES seems newer. I don’t know at this point if any 486DLCs were released commercially with this stepping – or even if any retail 486DLCs have DIR registers enabled.

Let’s now talk about the Ti 486SXL. After having simply renamed the Cyrix 486DLC to Ti 486DLC, Texas Instruments released a new, reworked core they called the “486SXL”. It was available with PGA132 (386) and PGA168 (486) pinouts. Two models were released for PGA132 Socket: the TI 486 SXL40 and the TI 486 SXL2-50. Here they are:

They come with two major differences compared to the Cyrix 486DLC. First, TI boosted the L1 cache from 1 KB to 8 KB (same size as the Intel 486). Then, the clock-doubling feature (also available on the SXL-40 despite its name) is not always activated by default like on the DRx². It must be enabled after boot by software. You basically have to mess with internal proprietary registers to enable the clock doubling mode.

Very few 386 motherboards support the Ti 486SXL but the UCA happily tested it with and without clock-doubling. Just for fun, I ran some benchmarks on all 386s now supported by the Universal Chip Analyzer. The code is not really well-tuned and is only based on some register manipulations and a lot of math integer operations (add, sub, imult and idiv). Here are the results:

386-class CPUs benchmark

Intel 386s appear as the slowest of them all. AMD 386s performances are exactly the same as expected but their famous 40 MHz model offers a 20% boost versus the Intel 386 DX-33. Cyrix 486DLC are much faster. When introduced, they claimed “up to 2x faster than 386DX at same clock frequency”. Our test showed a ~50% improvement between the Intel 386DX-33 and the Cyrix 486DLC-33. The 486DLC-40 is ~80% faster than the fastest Intel 386.

Anyway, the most impressive performance come from the DRx²: the rare 33/66 MHz version is actually ~7x faster than the original Intel 386 DX released at 12.5 MHz in 1986! Results from the TI486SXL show it’s entirely based on the Cyrix 486DLC core with no tuning at all on the microarchitecture. The effect of the increased 8 KB cache is invisible because the UCA has an extremely fast RAM without any wait-states (similar to the L1 cache). Anyway, even real-world applications don’t benefit from a big gain (no more than 3-5% at best).

Stay tuned for more exciting news from the UCA!

 

The Odd Story of Factory-Downgraded 486s

Counterfeits CPU were very common in the mid-90s. The worst period was between 1993 (just after the launch of the Intel 486 DX2) and 1998 (when the Pentium II started to be multiplier-locked). It was extremely easy for tricksters to remove the original marking and reprint another one with a higher frequency rating. Many DX4-75 were remarked to DX4-100, and even more Pentium 133/150 were remarked as Pentium 166 or 200s.

Genuine factory-remarked CPUs also exist, but they’re generally uncommon. The most well-known example is the double-sigma (ΣΣ) sign added on early 386s after they had been tested bug-free from the infamous 32-bit multiplier bug. Some rare Intel 486 SX were also later remarked with a higher speed grade. Here are two of them:

As for all factory-remarks, the addition is quite obvious. Intel probably binned twice these CPUs again at the request of a big customer (IBM?) and added the second rating later. Today’s story about factory-remarks is much more unusual because it concerns standard models.

Am486DX4-100SV8B (remarked 5×86)

After I published this analysis some weeks ago, a reader told me he had a strange Am486DX4-100 that seemed to be a AMD 5×86. After a careful look at the printings that looked 100% genuine at first sight, he was kind enough to lend it to me for further investigation with the UCA. Here it is:

The “9626” date code tells us it was manufactured in late June or early July 1996, which is quite late for a Am486DX4. I immediately noticed the 25544 package code, only used for the 350 nm die. This die was the basis of all Am486DX5 and Am5x86. The “C” stepping was also unusual as the Am5x86 is based on the A-step (from November 1995) or B-Step (from March 1997). A “C” Stepping build in 1996 is incoherent with the 5×86 line, but very coherent with the 486DX4 (later 486DX4 in the latest “C” Stepping were built on the 25498 package in May/June 1996). So it was time for a test on the Universal Chip Analyzer:

 

WOW! There is no doubt: this CPU is really based on the standard 350 nm die with a fully enabled 16 KB Write-Back L1 cache and a working 4x multiplier. Actually, it can even be overclocked easily to 133 MHz. All specs, including power consumption and CPUID (0x4F4), make it indistinguishable from an AMD 5×86. This CPU can of course also work with a 3x multiplier like an AMD 486DX4-100 (CPUID drops to 0x494).

After some research, it seems that all CPUs based on the 25544/C package are marked as 486DX4-100SV8B while being really DX5 SV16B (5×86). AMD produced them for quite some time between February 1996 and March 1997. They probably stopped the production of the old 500 nm die in early ’96 but still had some demand from customers for DX4s, so they just used the new 350 nm die and marked these CPUs as DX4-100s. As long as you use the default x3 multiplier, they behave exactly like the old one … except for the cache size.

Has Intel also done such weird things? I could have sworn no way. I was wrong…

Intel 486DX2-66 SK080 (remarked DX4)

The same reader also sends me a DX2-66 that could be “really a DX4-100”. That sounded odd and really unlikely to me because Intel has a strict policy on S-Spec. Intel DX4s also have a specific CPUID to help distinguish them from DX2s by software. Unlike AMD 486s, this CPUID does NOT change with the multiplier used, so it’s strange to have a DX2 with a DX4’s CPUID. Here is the original CPU:

Everything looks genuine here. SK080 is one of the least common S-Spec for Intel DX2s. The only other S-Spec beginning with “SK” is the extremely rare SK058. The SK080 is a 3.3V SL-Enhanced part which seems to have been produced only between WW18’94 (May 1994) and WW48’94 (November 1994). Let’s plug in into the UCA:

Awesome! This is really a DX4 factory-downgraded to DX2-66. The 0x480 CPUID leaves no doubt about the original die used here. The usual power consumption and the ability to work fine at 3.3V at 100 MHz let me think it’s probably a DX4-100. With the multiplier set at 2x, the SK080 also works at 2×33 MHz as expected for a CPU marked as a DX2-66. To be 100% sure, I was able to find another sample to confirm these findings.

[Guide] Am486 Die & Packaging

After weeks spent to test A LOT of AMD 486 with the Universal Chip Analyzer, messing with a gas torch  to decap some of them and speaking with a former AMD engineer that worked on them back in the 90s, I’m happy to publish here all the information I was able to get! Here it is:

The Ultimate AMD 486 Die & Packaging Guide

 

PS: If you have any more information about AMD 486, please leave a comment. Thanks!

[UCA CPU Analysis] Prototype UMC Green CPU U5S-SUPER33

While sorting some new Engineering Samples I received lately, I exhumed some prototypes from my collection. They came without missing pins, so they are good candidates for an advanced investigation with the Universal Chip Analyzer.

Let’s begin with the first one, a UMC Green CPU U5S-SUPER33

It’s marked “Confidential” on the last line, which means it’s an engineering sample. The date code is quite early: 9416. It was manufactured on the third week of April 1994. This CPU is not one of the very first samples of the whole U5S line regardless of the frequency, but probably a prototype for the specific 33 MHz version. Also notice the famous “Not for U.S. sale or import” line, written here because UMC was afraid – and rightly so – of the legal consequences of infringing Intel’s ‘338 patent.

Let’s try it on the Universal Chip Analyzer:

The prototype works fine up to 33 MHz. One of the first interesting points to check is the support of the CPUID instruction on such an early prototype. A few weeks ago, I was chatting with mtx500 (another well-known and very technical-aware CPU collector) about the way to detect UMC CPUs. He told me he uses the SALC/FS method to distinguish UMCs. The idea is to use the undocumented Intel opcode 0xD6 “SALC” (Set AL on Carry) instruction with the 0x64 “FS:” prefix. Only on a UMC, the combined 0xD6 0x64 opcodes return the “magic” constant 0x0AB6B1B07 in the EAX register.

I was wondering why to use this method when the CPUID instruction is supported? Mtx500 told me that early U5S might not support the CPUID instruction, so I was impatient to try on an early U5S like this one. It looks like the CPUID instruction is well supported, with the expected “UMC UMC UMC” string reported as well as the usual 0x423 family/model/revision on U5S(X). At first sight, this prototype looks strictly identical to the retail version. I ran some benchmarks to compare with later U5S and the cycle count of the test instruction flow is exactly the same.

However, on closer inspection, I found a noteworthy difference: power consumption. I ran the same INT benchmark on my 4 U5S with the voltage set at 5.11V exactly on all of them. The UCA is quite precise at measuring power consumption. All of them were tested at a fixed 33.3 MHz frequency, no matter their rated maximum speed.

The results are quite interesting. As you can see, all my retail U5S consume (almost) the same current: about 308 mA at 33 MHz while running my benchmark code. For an unknown reason, the U5SD is a bit higher at 321 mA, but the difference in power is only 50 mW. In the opposite, the prototype U5S-33 need MUCH more power to process the exact same code in the same time at the same frequency with the same voltage: 421 mA, which translate to about 2.15 watts.

The most obvious explanation is a switch in manufacturing process between the early prototype and the commercial revision. UMC was, at that time, one of the two major IC manufacturers in Taiwan, along with TSMC. We can consider they can switch easily between processes. On the very first U5S datasheet published in 1993, UMC indicates the U5S is built using a 0.6 µm CMOS process. This is consistent with the power consumption seen on the sample. I was able to find a table of the manufacturing process evolution in Taiwan in the 90s.

UMC and TSMC switched from 0.6 µm in 1993 to 0.4 µm in 1994. According to this table, it seems likely that the prototype is build using the ’93 process (0.6 µm) while UMC switched to the ’94 process (0.4 µm) for their retail mass-volume production. The retail U5S tested here need about 27% less power than the prototype. The theoretical reduction in power consumption between 0.6 µm and 0.4 µm is 33%, so that makes perfect sense. This Engineering sample is probably an early U5S manufactured with the original 1993 0.6 µm process. It is unknown at this point if retail (non-prototype) UMC Green CPU have ever been built with that process. Another analysis with a retail U5S produced earlier than August 1994 (Week 33’94) would allow us to be sure…

Identifying “blank” 486s with the UCA #1

The Universal Chip Analyzer is useful to test and spot counterfeits CPUs, but also to help identify CPUs without markings. The lack of printings on a CPU can be caused by a poor ink quality that gradually faded out over years, by abrasion with other ICs (common when you saved a nice CPU from a “scrap lot”) or because it’s an early engineering sample (prototype). Here are two examples.

Let’s start with the first one.

It’s supposed to be an early engineering sample coming from ST Microelectronics. Hand-writing on top are “X2, Y4 #7”, probably related to the coordinates of this particular die on the wafer (X=2 , Y=4) and the wafer number (#7), and also “PLL”, which probably mean it was designed to test the integrated Phase-Lock Loop (clock multiplier). The back of the CPU shows that the PLL was configured for “3XCLK”. So it’s a DX4 class CPU. But it could also be a 5×86 ES. I have tested it on the UCA at 3.45V.

All 486s from ST are just rebranded Cyrix 486s and this one makes no exception. It identifies itself as a Cyrix Cx486DX4 (M0.7). The most interesting point is the stepping. I have one It’s ST ST486 DX4-100 (you can see it here) and another Cyrix Cx486DX-100GP4. Both come with stepping 3.6. This sample uses stepping 4.0. I do not have any Cyrix 486s (or IBM or It’s ST) with such a late stepping. I am not even sure this stepping finally reached the commercial status. This sample works perfectly fine at 120 MHz (3×40 MHz) with 3.45V while my Cyrix DX4-100 requires 3.6V to work at 120 MHz and the retail It’s ST doesn’t work at all when overclocked at 120 MHz.

At this point, I have no proof that this sample comes from TI and not directly from Cyrix. Anyway, it could be an engineering sample for a hypothetical Cx486DX4-120, that was finally canceled to avoid hurting 5×86 sales. Interesting.

Here is the other one.

The package marking (25253) tell us it’s an early AMD 486s assembled by Kyocera, but there is nothing more written on top or back of the chip. Package number is almost often used for 3.3V parts (while 5V parts from the same era come on the 25220 package). Time to plug it on the UC!

Early AMD 486s use the Intel 486 microcode, so they’re virtually indistinguishable by software. I’m testing a very nice way to distinguish them but that’s another story (I’m waiting for a new PCB and I’ll tell you more if it works as expected). The CPUID have 8 KB of L1 write-through cache and the CPU doesn’t support write-back, so it’s a (N)V8T revision and not a later SV8B. It doesn’t support 3x multiplier, so it’s a DX2 and not a DX4. Testing various frequencies shows it can work fine at 40 MHz. This unmarked CPU is probably an Am486DX2-80 NV8T, or maybe an Am486DX2-66 NV8T with a good overclocking capability. Nothings suggest it’s an engineering sample. Markings have probably faded over time (or have been removed due to mechanical action).

[UCA CPU Analysis] Intel 486 DX2-66 SYE36 ES

I’m starting a new section: IC Analysis! The goal is to study odd or rare CPUs with the Universal Chip Analyzer. As an avid CPU collector, I have many of them. Since I started collecting back in the early 00s, I have only been interested in Engineering Samples. These are basically prototypes of retail CPUs. Knowing their specification is often very interesting for historical purposes (ie: to retrace the timeline of the development).

Let’s start with this 486 DX2-66 Engineering Sample:

This processor is uncommon in many respects, even for an engineering sample. It comes with the standard Intel i486 DX2 logo but other writings are printed instead of being laser-engraved. The part number on the first line (“A80486DX2-66”) is the retail one, while Intel often used the code number (“P24” or “A80P24”) on early prototypes of the 486DX2.

The second line shows the date when the die (the piece of silicon where the CPU has been engraved) was assembled inside the ceramic packaging: week 22 of 1992, so between May 25th and May 31st, 1992. The date when the die itself has been produced is marked on the back: week 17 of 1992 (between April 20 & 26, 1992). Intel officially introduced the first clock-doubled 486DX2 at 50 MHz on March 3rd, 1992. The 486DX2 at 66 MHz was launched five months later, on August 10th, 1992. This sample has been produced before the initial production of the 486DX2-66.

Another very rare feature of this CPU is the Intel’s product spec number used. From the 70s until today, Intel has used a 5-digit alphanumeric code (named “S-Spec”) to identify all their retail products. An S-Spec always starts with the letter “S” (ie: SX366 is a 80386 DX-33 and SR147 is a Core i7 4770K). The only exception is for prototypes (engineering or qualification samples), where the code begins with a “Q”. The presence of that “Q-Spec” (also named QDF) on a CPU is the most effective way to distinguish a pre-production sample from its standard production counterpart. On this obvious engineering sample (also marked “ES” on front), the QDF starts with S: “SYE36”. For a very short period (1991/1992), Intel produced some 386/486 Engineering samples with a spec code starting with “SXE”, “SYE” and “SZE”. The reason is still unknown, but this sample is one of them.

It’s now time to test this SYE36 sample with the UCA

And It works fine! This early sample does not support the CPUID instruction, but the value at reset is 0x433. The first commercial stepping is A2 with a CPUID set at 0x432. Only a DX2-50 has been released with this stepping, which didn’t seem able to run properly at 66 MHz. This sample uses the B1 stepping, like the first retail 486 DX2-66 (SX645) released. Power consumption measured on FPU benchmark mode is quite high (4.3 W) but still within specs (4.5 W). Later DX2-66s need less energy.

Despite its unusual markings, it seems this sample was a qualification sample rather than a “true” engineering sample. It was probably sent to Intel’s customers for validation some weeks before the official launch. Other than that, it’s strictly identical to a SX645 486 DX2-66.

Spotting Counterfeit Am486 with the UCA

While I was adding support for AMD CPU on the Universal Chip Analyzer, I spotted what looked-like a strange chip at first sight. I was then working on the L1 cache size detection, to distinguish between CPUs with 8 KB and others with 16 KB. In their BIOS Development Guide, AMD wrote a specific code that checks the status of a tag bit in a test register (TR4). After implementing this test path in the x86 code run by the CPU on the UCA, I needed a CPU with 16 KB L1 cache to try on 486 (5x86s were OK). I found this uncommon Am486 :

This is a nice Am486 DX4-100V16BGI. This part number decodes as follows:  A clock tripled (“DX4”) CPU rated at 100 MHz (“100”) and 3.3V (“V”), with a 16 KB (“16”) Write-Back (“B”) L1 cache in a 168-pin PGA package (“G”) and qualified at Industrial temperature range (“I”). This last point is uncommon because the vast majority of Am486 are “Commercial” grade (0°C to 85°C) and not “Industrial” (-40°C to +100°C). That’s probably why I bought this CPU years ago.

But the AMD code was not working: the size of the cache detected was 8 KB instead of 16 KB. I began to have doubts about the genuineness of this CPU. I started to play with the UCA. No way to enable Write-Back: the CPU stays in Write-Through Mode and the CPUID does not change accordingly as on “SV8B” AMD 486s. This CPU does not support Write-Back. I suspected a remarked early “NV8T” DX4-100, but that was not the case: they come with a CPUID 0x484 and this CPU was 0x482 in 3x Mode and 0x432 in 2x Mode.

I was able to find a very early Am486DX2-80 V8T (notice the lack of “N”) manufactured in 1994 with the first A-Stepping. The UCA detects a CPUID set at 0x432, which match with my fake DX4 (in 2x Mode). Early Am486DX4-100 V8T also exists with a CPUID 0x482 in 3x Mode. Some of them seem to have been later remarked to Am486 DX4-100V16BGI.

On closer inspection, several points should have caught my attention about this CPU. No way to be certain of what it really was without the UCA, but the fact that it was a fake could have been known sooner.

    1. Package code is wrong

The AMD package code is written in bottom left of all AMD CPUs from this era. The first AMD Am486s like the Am486DX-33/40 or very early Am486SX2/DX2s use the “24361” package. Later 486DX2 “V8T” and “NV8T” CPUS come in the “25220” or “25253” package. Enhanced “SV8B” DX4s (with SMI and Write-Back) are assembled with the “25398” package. Then we have package “25498” for newer CPUs like the Am486DE2. Later models (SV16B and 5×86) use the “25544” package”. This later one was expected for a genuine Am486DX4-100V16BGI, but the fake CPU comes with an old “25253” (N)V8T package.

Package code is “25253”, similar than old (N)V8T Am486
    1. Markings without hatching

As you can see in the picture below, AMD markings on CPUs from this era use a typical hatching pattern. This pattern is not present at all on the fake CPU.

    1. Marking error

But the most obvious error is a big mistake on printing. Here you can see the word “COMPATIBLE” is actually spelled “COMPATTBLE”, with a double “T”.

There is no doubt at this point that this CPU is a counterfeit Am486DX4. The only question remaining is when was it remarked by fakers? Counterfeits CPUs – especially 486s – were common in the 90s to boost frequency, but here, the original CPU was already an Am486DX4-100 (albeit a very early one with 8 KB L1 Write-Though Cache, instead of the expected 16 KB L1 Write-Back Cache). More recently, in the mid-2010s, old CPUs from the 90s were also faked to target CPU collectors all over the world.

Looking at eBay listings right now (2020-04-23), I found 4 vendors selling Am486 DX4-100V16BGI for a (very) high price. Two of them – including one who only sells multiple 30 pcs lots – are obviously the same fake as the sample analyzed here. The other two look different but still highly suspicious, with a Windows Logo not on par with the unusual Windows printing from AMD for the first one, and a very odd font for the second one (seems also marked “COMPATIBLF”)

Collectors beware of these CPUs!